Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.172
Filtrar
1.
Front Immunol ; 15: 1362727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585277

RESUMO

Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.


Assuntos
Pancreatite , Humanos , Doença Aguda , Células Endoteliais/metabolismo , Pâncreas , Pancreatite/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
J Nanobiotechnology ; 22(1): 148, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570776

RESUMO

Kaempferol (KA), an natural antioxidant of traditional Chinese medicine (TCM), is extensively used as the primary treatment for inflammatory digestive diseases with impaired redox homeostasis. Severe acute pancreatitis (SAP) was exacerbated by mitochondrial dysfunction and abundant ROS, which highlights the role of antioxidants in targeting mitochondrial function. However, low bioavailability and high dosage of KA leading to unavoidable side effects limits clinical transformation. The mechanisms of KA with poor bioavailability largely unexplored, hindering development of the efficient strategies to maximizing the medicinal effects of KA. Here, we engineered a novel thioketals (TK)-modified based on DSPE-PEG2000 liposomal codelivery system for improving bioavailability and avoiding side effects (denotes as DSPE-TK-PEG2000-KA, DTM@KA NPs). We demonstrated that the liposome exerts profound impacts on damaging intracellular redox homeostasis by reducing GSH depletion and activating Nrf2, which synergizes with KA to reinforce the inhibition of inadequate fission, excessive mitochondrial fusion and impaired mitophagy resulting in inflammation and apoptosis; and then, the restored mitochondrial homeostasis strengthens ATP supply for PAC renovation and homeostasis. Interestingly, TK bond was proved as the main functional structure to improve the above efficacy of KA compared with the absence of TK bond. Most importantly, DTM@KA NPs obviously suppresses PAC death with negligible side effects in vitro and vivo. Mechanismly, DTM@KA NPs facilitated STAT6-regulated mitochondrial precursor proteins transport via interacting with TOM20 to further promote Drp1-dependent fission and Pink1/Parkin-regulated mitophagy with enhanced lysosomal degradation for removing damaged mitochondria in PAC and then reduce inflammation and apoptosis. Generally, DTM@KA NPs synergistically improved mitochondrial homeostasis, redox homeostasis, energy metabolism and inflammation response via regulating TOM20-STAT6-Drp1 signaling and promoting mitophagy in SAP. Consequently, such a TCM's active ingredients-based nanomedicine strategy is be expected to be an innovative approach for SAP therapy.


Assuntos
Quempferóis , Pancreatite , Humanos , Doença Aguda , Quempferóis/farmacologia , Quempferóis/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Inflamação/metabolismo
3.
Sci Rep ; 14(1): 9382, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654064

RESUMO

Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.


Assuntos
Ativinas , Movimento Celular , Macrófagos , Ativação de Neutrófilo , Pancreatite , Transdução de Sinais , Animais , Ativinas/metabolismo , Camundongos , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Pancreatite/metabolismo , Pancreatite/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Modelos Animais de Doenças , Células RAW 264.7 , Ativação de Macrófagos , Células HL-60 , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Masculino
4.
Mediators Inflamm ; 2024: 9078794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590775

RESUMO

Background: Acute pancreatitis (AP) is a clinically frequent acute abdominal condition, which refers to an inflammatory response syndrome of edema, bleeding, and even necrosis caused by abnormal activation of the pancreas's own digestive enzymes. Intestinal damage can occur early in the course of AP and is manifested by impaired intestinal mucosal barrier function, and inflammatory reactions of the intestinal mucosa, among other factors. It can cause translocation of intestinal bacteria and endotoxins, further aggravating the condition of AP. Therefore, actively protecting the intestinal mucosal barrier, controlling the progression of intestinal inflammation, and improving intestinal dynamics in the early stages of AP play an important role in enhancing the prognosis of AP. Methods: The viability and apoptosis of RAW264.7 cells treated with Esculentoside A (EsA) and/or lipopolysaccharide were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB signaling pathway-related proteins were detected by western blot (WB). An enzyme-linked immunosorbent assay was used to measure TNF-α and IL-6 secretion. Results: In vitro experiments demonstrated that EsA not only promoted the apoptosis of inflammatory cells but also reduced the secretion of TNF-α and IL-6 in a dose-dependent manner. Additionally, it inhibited the activation of the NF-κB signaling pathway by decreasing the expression of phosphorylated-p65(p-p65) and elevating the expression of IκBα. Similarly, in vivo experiments using a rat AP model showed that EsA inhibited the expression of p-p65 elevating the expression of IκBα in the intestinal tissues of the rat AP model and promoting the apoptosis of inflammatory cells in the intestinal mucosa in vivo experiments, while improving the pathological outcome of the pancreatic and intestinal tissues. Conclusion: Our results suggest that EsA can reduce intestinal inflammation in the rat AP model and that EsA may be a candidate for treating intestinal inflammation in AP and further arresting AP progression.


Assuntos
NF-kappa B , Ácido Oleanólico/análogos & derivados , Pancreatite , Saponinas , Ratos , Animais , NF-kappa B/metabolismo , Pancreatite/metabolismo , Inibidor de NF-kappaB alfa , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Doença Aguda , Inflamação/tratamento farmacológico
5.
Dig Dis Sci ; 69(4): 1242-1252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441784

RESUMO

BACKGROUND: Intestinal barrier dysfunction in acute pancreatitis (AP) may progress to systemic inflammatory response syndrome (SIRS) and multi-organ failures by causing bacterial translocation. Larazotide acetate (LA) is a molecule that acts as a tight junction (TJ) regulator by blocking zonulin (Zo) receptors in the intestine. AIMS: In our study, we aimed to investigate the effects of LA on intestinal barrier dysfunction and bacterial translocation in the AP model in rats. METHODS: Thirty-two male Sprague-Dawley rats were divided into 4 groups; control, larazotide (LAR), AP, and AP + LAR. The AP model was created by administering 250 mg/100 g bm L-Arginine intraperitoneally 2 times with an hour interval. AP + LAR group received prophylactic 0.01 mg/mL LA orally for 7 days before the first dose of L-Arginine. For intestinal permeability analysis, fluorescein isothiocyanate-dextran (FITC-Dextran) was applied to rats by gavage. The positivity of any of the liver, small intestine mesentery, and spleen cultures were defined as bacterial translocation. Histopathologically damage and zonulin immunoreactivity in the intestine were investigated. RESULTS: Compared to the control group, the intestinal damage scores, anti-Zo-1 immunoreactivity H-Score, serum FITC-Dextran levels and bacterial translocation frequency (100% versus 0%) in the AP group were significantly higher (all p < 0.01). Intestinal damage scores, anti-Zo-1 immunoreactivity H-score, serum FITC-Dextran levels, and bacterial translocation frequency (50% versus 100%) were significantly lower in the AP + LAR group compared to the AP group (all p < 0.01). CONCLUSIONS: Our findings show that LA reduces the increased intestinal permeability and intestinal damage by its effect on Zo in the AP model in rats, and decreases the frequency of bacterial translocation as a result of these positive effects.


Assuntos
Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Enteropatias , Pancreatite , Ratos , Masculino , Animais , Pancreatite/metabolismo , Mucosa Intestinal/metabolismo , Ratos Sprague-Dawley , 60435 , Translocação Bacteriana , Doença Aguda , Oligopeptídeos/farmacologia , Enteropatias/metabolismo , Arginina , Permeabilidade
6.
J Cell Mol Med ; 28(4): e18120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358010

RESUMO

Our previous study confirmed that umbilical cord mesenchymal stem cells-exosomes (ucMSC-Ex) inhibit apoptosis of pancreatic acinar cells to exert protective effects. However, the relationship between apoptosis and autophagy in traumatic pancreatitis (TP) has rarely been reported. We dissected the transcriptomics after pancreatic trauma and ucMSC-Ex therapy by high-throughput sequencing. Additionally, we used rapamycin and MHY1485 to regulate mTOR. HE, inflammatory factors and pancreatic enzymatic assays were used to comprehensively determine the local versus systemic injury level, fluorescence staining and electron microscopy were used to detect the effect of autophagy, and observe the expression levels of autophagy-related markers at the gene and protein levels. High-throughput sequencing identified that autophagy played a crucial role in the pathophysiological process of TP and ucMSC-Ex therapy. The results of electron microscopy, immunofluorescence staining, polymerase chain reaction and western blot suggested that therapeutic effect of ucMSC-Ex was mediated by activation of autophagy in pancreatic acinar cells through inhibition of mTOR. ucMSC-Ex can attenuate pancreas injury by inhibiting mTOR to regulate acinar cell autophagy after TP. Future studies will build on the comprehensive sequencing of RNA carried by ucMSC-Ex to predict and verify specific non-coding RNA.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Pancreatite , Humanos , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Serina-Treonina Quinases TOR/metabolismo , Pancreatite/metabolismo , Autofagia/genética , Apoptose
7.
J Extracell Vesicles ; 13(2): e12410, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320981

RESUMO

Extracellular vesicles (EVs) exert a significant influence not only on the pathogenesis of diseases but also on their therapeutic interventions, contingent upon the variances observed in their originating cells. Mitochondria can be transported between cells via EVs to promote pathological changes. In this study, we found that EVs derived from M1 macrophages (M1-EVs), which encapsulate inflammatory mitochondria, can penetrate pancreatic beta cells. Inflammatory mitochondria fuse with the mitochondria of pancreatic beta cells, resulting in lipid peroxidation and mitochondrial disruption. Furthermore, fragments of mitochondrial DNA (mtDNA) are released into the cytosol, activating the STING pathway and ultimately inducing apoptosis. The potential of adipose-derived stem cell (ADSC)-released EVs in suppressing M1 macrophage reactions shows promise. Subsequently, ADSC-EVs were utilized and modified with an F4/80 antibody to specifically target macrophages, aiming to treat ferroptosis of pancreatic beta cells in vivo. In summary, our data further demonstrate that EVs secreted from M1 phenotype macrophages play major roles in beta cell ferroptosis, and the modified ADSC-EVs exhibit considerable potential for development as a vehicle for targeted delivery to macrophages.


Assuntos
Vesículas Extracelulares , Ferroptose , Células Secretoras de Insulina , Pancreatite , Humanos , Doença Aguda , Células Secretoras de Insulina/metabolismo , Pancreatite/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Mitocôndrias
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401696

RESUMO

Acute pancreatitis (AP) can lead to death; however, there is no specific treatment for AP. Screening of drugs for AP treatment is rarely performed. Compounds were screened in a primary pancreatic acinar cell and peritoneal macrophage coculture system. Compounds were used in vitro and in vivo. Compound targets were predicted and validated. Among the 18 nitrogen-containing heterocycles, Z10 was shown to decrease the cerulein plus lipopolysaccharide (CL)-induced secretion of both acinar digestive enzymes and macrophage cytokines. Z10 was also shown to ameliorate CL-induced or sodium taurocholate-induced AP in mice. Proteomics analysis and enzyme linked immunosorbent assay (ELISA) revealed that Z10 decreased the levels of D-dopachrome tautomerase (Ddt) within macrophages and those in the extracellular milieu under CL treatment. Z10 also decreased Ddt expression in AP mice. Moreover, exogenous Ddt induced cytokine and digestive enzyme secretion, which could be inhibited by Z10. Ddt knockdown inhibited CL-induced cytokine secretion. Medium from CL-treated macrophages induced the release of amylase by acinar cells, and Ddt knockdown medium decreased amylase secretion. The target of Z10 was predicted to be ERK2. Z10 increased the thermostability of ERK1/2 but not ERK1 K72A/ERK2 K52A. The docking poses of ERK1 and ERK2 with Z10 were similar. Z10 inhibited ERK1/2 phosphorylation, and Ddt levels and cytokines were regulated by ERK1/2 during AP. Additionally, Z10 could not further inhibit cytokines under ERK1/2 knockdown with CL. Thus, this study revealed that Z10-mediated ERK1/2 inhibition decreased Ddt expression and secretion by macrophages. Ddt inhibition decreased cytokine release and digestive enzyme secretion.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Doença Aguda , Citocinas , Amilases/efeitos adversos , Pirazóis
9.
Sci Adv ; 10(5): eadj0146, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306436

RESUMO

Acute pancreatitis (AP) is one of the most common gastrointestinal diseases. Bile acids (BAs) were proposed to be a cause of AP nearly 170 years ago, though the underlying mechanisms remain unclear. Here, we report that two G protein-coupled receptors, GPR39 and GHSR, mediated cellular responses to BAs. Our results revealed GPR39 as an evolutionarily conserved receptor for BAs, particularly 3-O-sulfated lithocholic acids. In cultured cell lines, GPR39 is sufficient for BA-induced Ca2+ elevation. In pancreatic acinar cells, GPR39 mediated BA-induced Ca2+ elevation and necrosis. Furthermore, AP induced by BAs was significantly reduced in GPR39 knockout mice. Our findings provide in vitro and in vivo evidence demonstrating that GPR39 is necessary and sufficient to mediate BA signaling, highlighting its involvement in biliary AP pathogenesis, and suggesting it as a promising therapeutic target for biliary AP.


Assuntos
Pancreatite , Receptores Acoplados a Proteínas G , Animais , Camundongos , Doença Aguda , Ácidos e Sais Biliares , Proteínas de Transporte/metabolismo , Camundongos Knockout , Pancreatite/genética , Pancreatite/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
10.
Expert Rev Proteomics ; 21(1-3): 115-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38372668

RESUMO

INTRODUCTION: Around 20% of individuals diagnosed with acute pancreatitis (AP) may develop severe acute pancreatitis (SAP), possibly resulting in a mortality rate ranging from 15% to 35%. There is an urgent need to thoroughly understand the molecular phenotypes of SAP resulting from diverse etiologies. The field of translational research on AP has seen the use of several innovative proteomic methodologies via the ongoing improvement of isolation, tagging, and quantification methods. AREAS COVERED: This paper provides a comprehensive overview of differentially abundant proteins (DAPs) identified in AP by searching the PubMed/MEDLINE database (2003-2023) and adds significantly to the current theoretical framework. EXPERT OPINION: DAPs for potentially diagnosing AP based on proteomic identification need to be confirmed by multi-center studies that include larger samples. The discovery of DAPs in various organs at different AP stages via proteomic technologies is essential better to understand the pathophysiology of AP-related multiple organ dysfunction syndrome. Regarding the translational research of AP, novel approaches like single-cell proteomics and imaging using mass spectrometry may be used as soon as they become available.


Assuntos
Pancreatite , Humanos , Pancreatite/diagnóstico , Pancreatite/complicações , Pancreatite/metabolismo , Proteômica , Doença Aguda , Insuficiência de Múltiplos Órgãos
11.
J Ethnopharmacol ; 326: 117873, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38346523

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhubarb is the peeled and dried roots of Rheum palmatum L. and Rheum tanguticum Maxim. ex Balf. or Rheum officinale Baill. Free total rhubarb anthraquinones (FTRAs) were isolated and extracted from rhubarb. Previous studies have revealed that the early administration of FTRAs protects the intestinal mucosal barrier in rats with severe acute pancreatitis (SAP), the mechanism of which is not yet clear. However, we observed an enhanced expression of intestinal pyroptotic factors in rats treated with SAP, which may be related to the mechanism of intestinal barrier protection by FTRAs. AIM OF THE STUDY: The main objective of this study was to investigate the mechanism by which FTRAs protect the intestinal mucosal barrier in SAP rats, focusing on the classical pyroptosis pathway. MATERIALS AND METHODS: SAP was induced in rats through retrograde injection of sodium taurocholate via the pancreaticobiliary duct. Subsequently, FTRAs (22.5, 45, and 90 mg/kg), rhubarb (900 mg/kg, positive control), and saline (control) were administered at 0 h (immediately), 12 h, and 24 h post-surgery. Pancreatic and intestinal tissue injury, positive PI staining rate, and expression levels of various factors in intestinal tissues were compared across different groups. These factors include diamine oxidase (DAO), lactate dehydrogenase (LDH), high mobility group box chromosomal protein 1(HMGB1) and pro-inflammatory factors in intestinal and serum, pyroptosis-associated factors, toll-like receptor 4 (TLR-4), nuclear factor kappa-B (NF-kB), apoptosis-associated speck-like protein (ASC), NOD-like receptor protein 3 (NLRP3), cysteine protease-1 (caspase-1) and Gasdermin (GSDMD). RESULTS: The findings indicated that FTRAs protected the damaged intestine and pancreas and restored the expression of intestinal epithelial junction proteins in SAP rats. Additionally, it reduced intestinal and serum levels of DAO, interleukin 1, interleukin 18, HMGB1, and LDH, attenuated intestinal Positive PI staining rate, and significantly decreased the expressions of TLR-4, NF-kB, ASC, NLRP3, caspase-1 and GSDMD in SAP rats. CONCLUSIONS: The results suggest that FTRAs inhibited pyroptosis through down-regulation of the NLRP3-Caspase-1-GSDMD and TLR-4- NF-kB signaling pathways of intestinal tissues., thereby protecting the intestinal barrier of SAP rats.


Assuntos
Proteína HMGB1 , Pancreatite , Rheum , Ratos , Animais , Pancreatite/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Caspase 1 , Ratos Sprague-Dawley , Doença Aguda , Proteínas NLR , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico
12.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390952

RESUMO

Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2­bis(2­aminophenoxy)ethane­N,N,N',N'­tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA­AM), a cell­permeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models in vitro, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and in vivo, intra­ductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTA­AM­loaded LN (BLN) effectively and rapidly eliminated excessive Ca2+ and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNF­α, IL­6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca2+ overload in patients with AP.


Assuntos
Ácido Egtázico/análogos & derivados , Pancreatite , Humanos , Ratos , Animais , Pancreatite/metabolismo , Lipossomos/metabolismo , Cálcio/metabolismo , Doença Aguda , Células Acinares/patologia , Necrose/metabolismo
13.
Int Immunopharmacol ; 129: 111593, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38290206

RESUMO

Acute pancreatitis (AP) is a prevalent, destructive, non-infectious pancreatic inflammatory disease, which is usually accompanied with systemic manifestations and poor prognosis. Gastrodin (4-hydroxybenzyl alcohol 4-O-ß-d-glucopyranoside) has ideal anti-inflammatory effects in various inflammatory diseases. However, its potential effects on AP had not been studied. In this study, serum biochemistry, H&E staining, immunohistochemistry, immunofluorescence, western blot, real-time quantitative PCR (RT-qPCR) were performed to investigate the effects of Gastrodin on caerulein-induced AP pancreatic acinar injury model in vivo and lipopolysaccharide (LPS) induced M1 phenotype macrophage model in vitro. Our results showed that Gastrodin treatment could significantly reduce the levels of serum amylase and serum lipase while improving pancreatic pathological morphology. Additionally, it decreased secretion of inflammatory cytokines and chemokines, and inhibited the levels of p-p38/p38, p-IκB/IκB as well as p-NF-κB p-p65/NF-κB p65. Overall our findings suggested that Gastrodin might be a promising therapeutic option for patients with AP by attenuating inflammation through inhibition of the p38/NF-κB pathway mediated macrophage cascade.


Assuntos
Álcoois Benzílicos , Glucosídeos , NF-kappa B , Pancreatite , Humanos , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Doença Aguda , Inflamação , Macrófagos/metabolismo
14.
DNA Cell Biol ; 43(3): 141-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215233

RESUMO

Primary cilia are microtubule-based organelles that mediate various biological processes. Pancreatic cells are typically ciliated; however, the role of primary cilia in acute pancreatitis (AP) is largely unknown. Here, we report that the loss of primary cilia, mediated by SHCBP1 (SHC1 binding protein), exerted a provocative effect on AP. Primary cilia are extensively lost in inflamed pancreatic cells in vitro and in mouse tissues with AP in vivo. Abrogation of primary cilia aggravated lipopolysaccharide (LPS)-induced inflammation in pancreatic cells. Mechanistically, AP induced the overexpression of SHCBP1 mitotic factor, which is localized to the base of primary cilia. SHCBP1 deficiency relieved LPS- and cerulein-induced pancreatitis by preventing the loss of primary cilia in vitro and in vivo. Collectively, we reveal that inflammation-induced loss of primary cilia aggravates AP. Furthermore, abrogating SHCBP1 to prevent primary cilia loss is an efficient strategy to combat AP.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Pancreatite/prevenção & controle , Lipopolissacarídeos/toxicidade , Doença Aguda , Cílios/metabolismo , Inflamação
15.
J Ethnopharmacol ; 325: 117750, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38216100

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal formulas from Traditional Chinese Medicine are common and well-established practice for treating acute pancreatitis (AP) patients. However, little is known about their bioactive ingredients and mechanisms, such as their targets and pathways to inhibit inflammation. AIM OF THE STUDY: This study aimed to evaluate the effect of Qing Xia Jie Yi Formula (QXJYF) granules on AP and discuss the molecular mechanisms involved. MATERIALS AND METHODS: Major compounds in QXJYF granules were identified using UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). The effect of QXJYF granules on experimental AP models both in vitro and in vivo, and detailed mechanisms were clarified. Two AP models were induced in mice by intraperitoneally injections of caerulein or L-arginine, and QXJYF granules were used to treat AP mice in vivo. Histological evaluation of pancreas and lung, serum amylase and lipase levels, serum inflammatory cytokines, inflammatory cell infiltration and macrophage phenotype were assessed. Bone marrow derived macrophages (BMDMs) were cultured and treated with QXJYF granules in vitro. BMDM phenotype and glycolysis levels were measured. Lastly, clinical effect of QXJYF granules on AP patients was verified. Predicted severe AP (pSAP) patients eligible for inclusion were assessed for enrollment. RESULTS: Nine major compounds were identified in QXJYF granules. Data showed that QXJYF granules significantly alleviated AP severity both in caerulein and L-arginine-induced AP models in vivo, pancreatic injury and inflammatory cell infiltration, systematic inflammation, lung injury and inflammatory cell infiltration were all improved after QXJYF treatment. QXJYF granules significantly reduced M1 macrophages during AP both in vivo and in vitro; besides, the mRNA expression levels of M1 genes such as inos, Tnfα, Il1ß and Il6 were significantly lower after QXJYF treatment in M1 macrophages. Mechanistically, we found that HK2, PFKFB3, PKM, LDHα levels were increased in M1 macrophages, but significantly decreased after QXJYF treatment. Clinical data indicated that QXJYF granules could significantly reduce CRP levels and shorten the duration of organ failure, thereby reducing the incidence of SAP and preventing pSAP patients from progressing to SAP. CONCLUSION: QXJYF granules alleviated AP through the inhibition of M1 macrophage polarization by suppressing glycolysis.


Assuntos
Pancreatite , Humanos , Camundongos , Animais , Pancreatite/metabolismo , Ceruletídeo/efeitos adversos , Doença Aguda , Inflamação/tratamento farmacológico , Macrófagos , Arginina
16.
Eur J Pharm Biopharm ; 195: 114179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199584

RESUMO

The timely suppression of inflammatory mediator production and mitigation of their effects on pancreatic acinar cells are crucial for the successful management of acute pancreatitis. To achieve effective treatment, we present a novel approach utilizing cysteine modified PEG nanoparticles for both precise accumulation at the site of pancreatitis and specific targeting of acinar cells. Methylprednisolone, a nonsteroidal anti-inflammatory drug, was tailored to enhance its circulation time in the bloodstream, preferentially accumulate in the pancreas and enhance cell uptake efficiency by acinar cells through specifically targeting L-Type amino acid transporter 1. The nanosystem significantly downregulated pro-inflammatory cytokines in plasma, resulting in the effective suppression of inflammation in acinar cells within an acute pancreatitis rat model. The utilization of the dual targeted therapy strategy holds considerable potential for the clinical management of pancreatitis.


Assuntos
Pancreatite , Ratos , Animais , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Cisteína/metabolismo , Metilprednisolona , Doença Aguda , Pâncreas/metabolismo , Polietilenoglicóis/metabolismo
17.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37974401

RESUMO

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Assuntos
Hipertrigliceridemia , Pancreatite , Receptores de Lipoproteínas , Animais , Humanos , Camundongos , Ratos , Doença Aguda , Dependovirus/genética , Dependovirus/metabolismo , Hipertrigliceridemia/genética , Hipertrigliceridemia/terapia , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Fígado/metabolismo , Pancreatite/genética , Pancreatite/terapia , Pancreatite/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo
18.
Transl Res ; 263: 28-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619665

RESUMO

To reveal dysregulated metabolism hallmark that was associated with a severe acute pancreatitis (SAP) phenotype. In this study, LC-MS/MS-based targeted metabolomics was used to analyze plasma samples from 106 acute pancreatitis (AP) patients (34 mild, 38 moderate, and 34 severe) admitted within 48 hours from abdominal pain onset and 41 healthy controls. Temporal metabolic profiling was performed on days 1, 3, and 7 after admission. A random forest (RF) was performed to significantly determine metabolite differences between SAP and non-SAP (NSAP) groups. Mass spectrometry imaging (MSI) and immunohistochemistry were conducted for the examination of pancreatic metabolite and metabolic enzyme alterations, respectively, on necrosis and paracancerous tissues. Simultaneously determination of serum and pancreatic tissue metabolic alterations using an L-ornithine-induced AP model to discover metabolic commonalities. Twenty-two significant differential metabolites screened by RF were selected to build an accurate model for the prediction of SAP from NSAP (AUC = 0.955). Six of 22 markers were found by MSI with significant alterations in pancreatic lesions, reduced ornithine-related metabolites were also identified. The abnormally expressed arginase2 and ornithine transcarboxylase were further discovered in combination with time-course metabolic profiling in the SAP animal models, the decreased ornithine catabolites were found at a late stage of inflammation, but ornithine-associated metabolic enzymes were activated during the inflammatory process. The plasma metabolome of AP patients is distinctive, which shows promise for early SAP diagnosis. AP aggravation is linked to the activated ornithine metabolic pathway and its inadequate levels of catabolites in in-situ lesion.


Assuntos
Pancreatite , Animais , Humanos , Pancreatite/diagnóstico , Pancreatite/metabolismo , Doença Aguda , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fenótipo , Ornitina , Índice de Gravidade de Doença
19.
Dig Dis Sci ; 69(1): 148-160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957410

RESUMO

BACKGROUND: Acute pancreatitis is an inflammation of the pancreatic glandular parenchyma that causes injury with or without the destruction of pancreatic acini. Clinical and experimental evidence suggest that certain systemic proinflammatory mediators may be responsible for initiating the fundamental mechanisms involved in microglial reactivity. Here, we investigated the possible repercussions of acute pancreatitis (AP) on the production of inflammatory mediators in the brain parenchyma focusing on microglial activation in the hippocampus. METHODS: The acute pancreatic injury in rats was induced by a pancreas ligation surgical procedure (PLSP) on the splenic lobe, which corresponds to approximately 10% of total mass of the pancreas. Blood samples were collected via intracardiac puncture for the measurement of serum amylase. After euthanasia, frozen or paraffin-embedded brains and pancreas were analyzed using qRT-PCR or immunohistochemistry, respectively. RESULTS: Immunohistochemistry assays showed a large number of Iba1 and PU.1-positive cells in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus of the PLSP group. TNF-α mRNA expression was significantly higher in the brain from PLSP group. NLRP3 inflammasome expression was found to be significantly increased in the pancreas and brain of rats of the PLSP group. High levels of BNDF mRNA were found in the rat brain of PLSP group. In contrast, NGF mRNA levels were significantly higher in the control group versus PLSP group. CONCLUSION: Our findings suggest that AP has the potential to induce morphological changes in microglia consistent with an activated phenotype.


Assuntos
Pancreatite , Ratos , Animais , Pancreatite/metabolismo , Microglia/metabolismo , Doença Aguda , Hipocampo/metabolismo , Pâncreas/metabolismo , RNA Mensageiro/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119646, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061566

RESUMO

Members of the Protein kinase D (PKD) kinase family each play important cell-specific roles in the regulation of normal pancreas functions. In pancreatic diseases PKD1 is the most widely characterized isoform with roles in pancreatitis and in induction of pancreatic cancer and its progression. PKD1 expression and activation increases in pancreatic acinar cells through macrophage secreted factors, Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, and reactive oxygen species (ROS), driving the formation of precancerous lesions. In precancerous lesions PKD1 regulates cell survival, growth, senescence, and generation of doublecortin like kinase 1 (DCLK1)-positive cancer stem cells (CSCs). Within tumors, regulation by PKD1 includes chemoresistance, apoptosis, proliferation, CSC features, and the Warburg effect. Thus, PKD1 plays a critical role throughout pancreatic disease initiation and progression.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite , Lesões Pré-Cancerosas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Quinases , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Quinases Semelhantes a Duplacortina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA